AP32323 (Infineon

How to use the on-chip temperature sensor
XMC1000

About this document

Scope and purpose

This application note provides information on how to use important temperature sensor functions in the SCU
XMC Lib and external library in the DAVE™ Version 4 environment.

Intended audience

Engineers or developers who would like to use the temperature sensor of the XMC1000 product family.

Application Note Please read the Important Notice and Warnings at the end of this document Revision 1.3
www.infineon.com 2016-02

o .
How to use the on-chip temperature sensor |n f| neon
XMC1000 |

Table of contents

Table of contents

ADBOUL thisS dOCUMENTcuviiiiriiiiiiierinerscrreseneest et esae st s sae st essessnessasssessnsssassnsssassssssasssessasssessasssessassassasssassns 1
TablE Of CONLENES.....cocviriiiriiiiiirerese sttt ssre st e s ssae st s saesassaessnessnssnassnssassnsssassnsssasssessasssassasssassasss 2
1 XMC™ Lib functions supporting temperature SENSONcceeeeruireenienresnenrersressessessesssessssssassesssesses 3
1.1 Calculation of current Chip tEMPEIatUIe......c.ccueeiecieeeeeeeereeeeere ettt st be e e e 3
1.1.1 XMC_SCU_CalCTEMPEIATUIE «...veeeeeieeteeeerieeeeteseeeteste st esesteseessessaesessesssessesseessassesseessessesnsesseessenses 3
1.2 Installation of threshold values for temperature COMParisONccecvecieeeeceereeieecereecee e 5
1.2.1 XMC_SCU_SetTemMPLOWLIMIL...cciiieiciireiiietinieeitenreereeseeseeseesitessressbessseesssesssesssesssasssassseesseesssesssanns 5
1.2.2 XMC_SCU_SetTemMPHIGNLIMIT.....iiiiieieiereeeeereetese ettt see et e e s e e s e beese e sasseesnesrneneansas 5
2 External library functions supporting the temperature SENSOrcccevvivveeniinenniincerneecesseecsesseeennes 9
2.1 Calculation of the current Chip tEMPEratUreccueeieiieeceeeeeeeeee ettt ee e 9
2,11 XMCL000_CalCTEMPEIALUIE ...cveeeeeieeeeeeerieeeeteseetesteeeessesseseessesseesessesssessesseessansesseessessesssesseensenses 9
2.2 Conversion of temperature to threshold values for temperature comparison........ccecceeveecvevveeeennene 11
2.2.1 XMCI000_CALCTSEVAR .ceeeiteecieectecte et eete et et e s testesteestessbessbaessaesatesstesnsasssasssessssesnsesnsesssesnsesssens 11
REVISION NISTOMY ...ccieeiiiiiecienreccecsee st s e s ssre s e e s aessaessseesaessaessaaessaessassaaessaasssaesssasssasssaenssesssessstessesssessstanns 15
Application Note 2 Revision 1.3

2016-02

s
How to use the on-chip temperature sensor ‘ In f| neon
XMC1000 |

XMC™ Lib functions supporting temperature sensor

1 XMC™ Lib functions supporting temperature sensor

The XMC1000 family of devices provides a Temperature Sensor (DTS) peripheral which measures and indicates
the current temperature. The DTS Temperature Sensor is also referred to as ‘TSE’ in the user documentation of
the XMC1100, XMC1200 and XMC1300.

The start-up time of the DTS is less than than 15 ps with a measurement time of up to 10 ms. The permitted
temperature sensor range is between -40°C (233 K) and 115°C (388 K). The accuracy of the DTS is typically +/-6°C
for a junction temperature above 20°C. For more information, please refer to the respective device user
documentation (Reference Manual, Data Sheet and Errata Sheet).

The XMC™ Lib consists of low level drivers which contain APIs for the XMC™ product family peripherals. The
System Control Unit (SCU) driver library is a part of the XMC™ Lib which groups functions for controlling the
General Control Unit including temperature monitoring, Clock Control Unit, Reset Control Unit and Interrupt
System. In this document, we introduce two sets of code examples based on the XMC1400 in DAVE™ Version 4
environment to illustrate the usage of these DTS functions which are included in the SCU XMC™ Lib.

When enabled, the temperature measurement starts and the result is stored via bit field TSE_MON of the
Temperature Sensor Counter2 Monitor Register (ANATSEMON). After storing the result, the temperature sensor
continues with the next measurement. The SCU XMC™ Lib XMC_SCU_CalcTemperature function can be used to
determine the current chip temperature using the TSE_MON value.

The temperature sensor is also capable of detecting low and high temperature events when the measurement
result crosses the higher and/or lower threshold values. The threshold values are configurable via bit fields
TSE_IL and TSE_IH in the temperature sensor low/high Temperature Interrupt Registers (ANATSEIL and
ANATSEIH). The SCU XMC™ Lib XMC_SCU_SetTempLowLimit and XMC_SCU_SetTempHighLimit functions can
be used to install the threshold values in the ANATSEIL and ANATSEIH registers.

The SCU XMC™ Lib XMC_SCU_CalcTemperature, XMC_SCU_SetTempLowLimit and
XMC_SCU_SetTempHighLimit functions are available to be used in XMC1400. These functions can also be used
for XMC1100, XMC1200, XMC1300 AB-step ES samples with a 2-byte user configuration sector version 0003, or
higher, and productive devices. The user configuration sector version is stored in the flash configuration sector
0, at address 10000FEA,,.

The following sections provide more details for the previously mentioned DTS API functions.

1.1 Calculation of current chip temperature

1.1.1 XMC_SCU_CalcTemperature
The specification of the XMC_SCU_CalcTemperature XMC Lib function is :

e Inputparameter :none
e Return status : chip temperature in degree Kelvin
e Prototype : unsigned long integer XMC_SCU_CalcTemperature (void)

In the code shown below, any one of these ports, P4.0, P4.1 or P4.2 is toggled when the temperature is at 25°C,
above 25°C or below 25°C. Prior to calling the library function to determine the current chip temperature, the
temperature sensor needs to be enabled via bit TSE_EN in the ANATSECTRL register. The
XMC_SCU_StartTempMeasurement XMC™ Lib function performs this configuration.

#include "xmc gpio.h"

Application Note 3 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
XMC™ Lib functions supporting temperature sensor

#include "xmc_ scu.h"
#define LEDO P4 O
#define LED1 P4 1
#define LED2 P4 2

/* Port pins output mode configuration */
XMC GPIO CONFIG t LED pin config =
{
.mode = XMC_GPIO MODE OUTPUT PUSH PULL,
.output level= 1U
i
vold main (void)

{

uint32 t temp C 0;
uint32 t temp k 0;
uint32 t limit = 0;
uint32 t delay = 10000;

/* Initialize port pins to output mode */
XMC GPIO Init (LEDO, &LED pin config);
XMC GPIO Init(LED1, &LED pin config);
XMC GPIO Init(LED2Z, &LED pin config);

/* Enable DTS */
XMC SCU_ StartTempMeasurement () ;

while (1)
{
/* Calculate temperature of the chip in Kelvin */

temp k = XMC SCU CalcTemperature () ;

/* Convert temperature to Celcius */
temp C = temp k - 273;
if(temp C == 25)
{
XMC GPIO ToggleOutput (LEDO) ;
}
else if (temp C > 25)
{

Application Note 4 Revision 1.3
2016-02

s
How to use the on-chip temperature sensor ‘ In f| neon
XMC1000 |

XMC™ Lib functions supporting temperature sensor

XMC GPIO ToggleOutput (LEDIL) ;
}
else if (temp C < 25)
{
XMC GPIO ToggleOutput (LED2) ;
}
while (--delay) ;
delay = 10000;
}

return O;

}

1.2 Installation of threshold values for temperature comparison

1.2.1 XMC_SCU_SetTempLowLimit

The specification of the XMC_SCU_SetTempLowLimit XMC™ Lib functionis :

Input parameter: low threshold temperature in degree Kelvin (allowed range 233 to 388)

Return status: status of equivalent low threshold value installation based on temperature provided
Prototype: XMC_SCU_STATUS_t XMC_SCU_SetTempLowLimit (uint32_t temperature)

1.2.2 XMC_SCU_SetTempHighLimit

The specification of the XMC_SCU_SetTempHighLimit XMC™ Lib function is :

Input parameter: high threshold temperature in degree Kelvin (allowed range 233 to 388)

Return status: status of equivalent high threshold value installation based on temperature provided
Prototype: XMC_SCU_STATUS_t XMC_SCU_SetTempHighLimit (uint32_t temperature)

In the code shown below, the DTS high temperature event happens when the temperature is above 0°C and the
DTS low temperature event happens when the temperature is below 85°C. The temperature measurement is
performed at room temperature. The appropriate threshold values shall be adapted according to the
application. The XMC_SCU_SetTempHighLimit and XMC_SCU_SetTempLowLimit XMC™ Lib functions are used
to convert these temperature points to the threshold values to be installed in the ANATSEIH and ANATSEIL
registers, respectively. The actual measurement result is available at ANATSEMON. The result is compared
against the configured limits in ANATSEIH and ANATSEIL registers. A high temperature event SRRAW.TSE_HIGH
is triggered because ANATSEMON is less than ANATSEIH. A low temperature event SRRAW.TSE_LOW is triggered
because ANATSEMON is more than ANATSEIL. For an input parameter which lies outside the permitted range,
the function returns one value. In this example, add or subtract 1 Kelvin to/from the input parameter and re-run
the function. If the function execution is successful, a zero value is returned.

In this example, interrupts are triggered for DTS high or DTS low temperature events. In the interrupt service
routine, IRQ1_Handler, the interrupt is disabled to prevent continuous triggering of interrupts as the
temperature does not change instantaneously. Upon entering the service routine for the first time, P4.0 is

Application Note 5 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
XMC™ Lib functions supporting temperature sensor

toggled when the temperature is higher than the threshold value for 0°C. P4.1 is toggled when the temperature
is lower than the threshold value for 85°C. Adummy interrupt is triggered for the second interrupt event.

#include "xmc gpio.h"
#include "xmc_ scu.h"
#define LEDO P4 O
#define LED1 P4 1

/* Port pins output mode configuration */
XMC GPIO CONFIG t LED pin config =
{
.mode = XMC_GPIO_MODE_OUTPUT PUSH_PULL,
.output level= 1U
i

void main (void)

{
uint32 t temp High k;
uint32 t temp HighStatus;
uint32 t temp Low Kk;
uint32 t temp LowStatus;

/* Initialize port pins to output mode */
XMC GPIO Init (LEDO, &LED pin config);
XMC GPIO Init(LED1, &LED pin config);

/* Enable interrupt node 1 */
NVIC EnableIRQ (IRQ1 IRQn);

/* Enable DTS */
XMC SCU StartTempMeasurement () ;

/* Convert DTS low temperature threshold value from °C to K */
temp Low k = 85 + 273;
temp LowStatus = 0;

/* Install DTS low temperature threshold value */
temp LowStatus = XMC SCU SetTempLowLimit (temp Low k) ;
while (temp LowStatus == 1)
{

temp Low k--;

Application Note 6 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
XMC™ Lib functions supporting temperature sensor

temp LowStatus = XMC SCU SetTempLowLimit (temp Low Kk);

/* Enable service request on DTS temperature lower than expected
event*/

XMC SCU_INTERRUPT EnableEvent (XMC SCU_ INTERRUPT EVENT TSE LOW) ;

/* Convert DTS high temperature threshold value from °C to K*/
temp High k = 0 + 273;
temp HighStatus = 0;

/* Install DTS high temperature threshold value*/
temp HighStatus = XMC SCU SetTempHighLimit (temp High k);
while (temp HighStatus == 1)
{
temp High k++;
temp HighStatus = XMC SCU SetTempHighLimit (temp High k);

/* Enable service request on DTS temperature higher than expected
event*/

XMC SCU INTERRUPT EnableEvent (XMC SCU INTERRUPT EVENT TSE HIGH);

while (1) ;

void IRQ1 Handler (void)
{
/* Check if DTS temperature higher than expected event has occurred */
if (1==XMC SCU HighTemperature())
{
/* Clear DTS high temperature event status */
XMC SCU_INTERRUPT ClearEventStatus (XMC SCU INTERRUPT EVENT TSE HIGH);

/* Disable service request on DTS temperature higher than expected

event*/
XMC_SCU_INTERRUPT_DiSableEvent(XMC_SCU_INTERRUPT_EVENT_TSE_HIGH);

Application Note 7 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
XMC™ Lib functions supporting temperature sensor

/* User code goes here .. */
XMC GPIO ToggleOutput (LEDO) ;
}

/* Check if DTS temperature lower than expected event has occurred */
if (1==XMC SCU LowTemperature())
{

/* Clear DTS low temperature event status */

XMC_SCU_INTERRUPT ClearEventStatus (XMC_ SCU INTERRUPT EVENT TSE_LOW) ;

/* Disable service request on DTS temperature lower than expected
event*/

XMC SCU_ INTERRUPT DisableEvent (XMC SCU INTERRUPT EVENT TSE LOW) ;

/* User code goes here .. */
XMC GPIO ToggleOutput (LEDIL) ;
}

Application Note 8 Revision 1.3
2016-02

s
How to use the on-chip temperature sensor ‘ In f| neon
XMC1000 |

External library functions supporting the temperature sensor

2 External library functions supporting the temperature sensor

For the XMC1100, XMC1200 and XMC1300 AA-step and AB-step EES, ES user configuration Version 0002, the
external library XMC1000_CalcTemperature, XMC1000_CalcTSEVAR functions are available for the equivalent
DTS features mentioned in Chapter 1. The XMC1000_tseRoutine.c must be added to the DAVE™ project. Two
sets of code examples are introduced based on the XMC1300 in DAVE™ Version 4 environment to illustrate the
usage of these external library DTS functions.

When enabled, the temperature measurement starts and the result is stored via bit field TSE_MON of the
Temperature Sensor Counter2 Monitor Register (ANATSEMON). After storing the result, the temperature sensor
continues with the next measurement. The external library XMC1000_CalcTemperature function can be used to
determine the current chip temperature using the TSE_MON value.

The temperature sensor is also capable of detecting low and high temperature events when the measurement
result crosses the higher and/or lower threshold values. The threshold values are configurable via bit fields
TSE_IL and TSE_IH in the temperature sensor low/high Temperature Interrupt Registers (ANATSEIL and
ANATSEIH). The external library XMC1000_CalcTSEVAR function can be used to convert the temperature to the
threshold values to be installed in the ANATSEIL and ANATSEIH registers.

The following sections provide more details for the previously mentioned DTS API functions.

2.1 Calculation of the current chip temperature

2.1.1 XMC1000_CalcTemperature

The specification of the XMC1000_CalcTemperature external library functionis :

e Input parameter: none
e Return status: chip temperature in degree Kelvin
e Prototype: unsigned long integer XMC1000_CalcTemperature (void)

In the code shown below, any one of these ports, P0.0, P0.6 or P0.9 is toggled when the temperature is at 25°C,
above 25°C or below 25°C. Prior to calling the library function to determine the current chip temperature, the
temperature sensor needs to be enabled via bit TSE_EN in the ANATSECTRL register. The
XMC_SCU_StartTempMeasurement XMC™ Lib function performs this configuration.

#include "xmc gpio.h"

#include "xmc scu.h"

#define LEDO PO O

#define LED1 PO 6

#define LED2 PO 9

/* Port pins output mode configuration */
XMC GPIO CONFIG t LED pin config =
{
.mode = XMC_GPIO MODE OUTPUT PUSH PULL,
.output level= 1U

Application Note 9 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
External library functions supporting the temperature sensor

}s

volid main (void)
{
uint32 t temp C = 0;

uint32 t temp k = 0;
uint32 t limit = 0;
uint32 t delay = 10000;

/* Initialize port pins to output mode */
XMC GPIO Init (LEDO, &LED pin config);
XMC GPIO Init (LED1, &LED pin config);
XMC GPIO Init (LED2, &LED pin config);

/* Enable DTS */
XMC SCU_ StartTempMeasurement () ;

while (1)
{
/* Calculate temperature of the chip in Kelvin */

temp k = XMC1000 CalcTemperature();

/* Convert temperature to Celcius */
temp C = temp k - 273;
if (temp C == 25)
{
XMC GPIO ToggleOutput (LEDO) ;
}
else if (temp C > 25)
{
XMC GPIO ToggleOutput (LEDIL) ;
}
else if (temp C < 25)
{
XMC GPIO ToggleOutput (LED2) ;
}
while (--delay) ;
delay = 10000;
}

return O;

Application Note 10 Revision 1.3
2016-02

s
How to use the on-chip temperature sensor ‘ In f| neon
XMC1000 |

External library functions supporting the temperature sensor

2.2 Conversion of temperature to threshold values for temperature
comparison

2,2.1 XMC1000_CalcTSEVAR

The specification of the XMC1000_CalTSEVAR external library functioniis :

Input parameter: threshold temperature in degree Kelvin (permitted range 233 to 388)

Return status: equivalent threshold value for the temperature provided as an input parameter

Prototype: unsigned long XMC1000_CalcTSEVAR(uint32_t temperature)

In the code shown below, the DTS high temperature event happens when the temperature is above 0°C and the
DTS low temperature event happens when the temperature is below 85°C. The temperature measurement is
performed at room temperature. The appropriate threshold values shall be adapted according to the
application. The XMC1000_CalcTSEVAR external library function is used to convert these temperature points to
the threshold values. The threshold values are installed in the ANATSEIH and ANATSEIL registers. The actual
measurement result is available at ANATSEMON. The result is compared against the configured limits in
ANATSEIH and ANATSEIL registers. A high temperature event SRRAW.TSE_HIGH is triggered because
ANATSEMON is less than ANATSEIH. A low temperature event SRRAW.TSE_LOW is triggered because
ANATSEMON is more than ANATSEIL. If the function returns zero, add or minus 1 Kelvin to the input parameter
and re-run the function. If the function execution is successful, the equivalent threshold value for the
temperature (K) is returned.

In this example, interrupts are triggered for DTS high or DTS low temperature events. In the interrupt service
routine, IRQ1_Handler, the interrupt is disabled to prevent continuous triggering of interrupts since the
temperature does not change instantaneously. Upon entering the service routine for the first time, P0.0 is
toggled when the temperature is higher than the threshold value for 0°C. P0.9 is toggled when the temperature
is lower than the threshold value for 85°C. A dummy interrupt is triggered for the second interrupt event.
#include "xmc gpio.h"

#include "xmc scu.h"

#define LEDO PO O
#define LED1 PO 9

/* Port pins output mode configuration */
XMC GPIO CONFIG t LED pin config =
{
.mode = XMC_GPIO MODE OUTPUT PUSH PULL,
.output level= 1U

}s

voilid main (void)
{
uint32 t temp High k;

Application Note 11 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
External library functions supporting the temperature sensor

uint32 t temp HighStatus;
uint32 t temp Low k;
uint32 t temp LowStatus;

/* Initialize port pins to output mode */
XMC GPIO Init (LEDO, &LED pin config);
XMC GPIO Init (LED1l, &LED pin config);

/* Enable SCU interrupt node 1 */
NVIC EnableIRQ(SCU 1 IRQn);

/* Enable DTS */
XMC SCU_ StartTempMeasurement () ;

/* Convert DTS low temperature threshold value from °C to K */
temp Low k = 85 + 273;
temp LowStatus = 0O;

/* Convert temperature in Kelvin to threshold value and install DTS
low temperature threshold value */

while (temp LowStatus == 0)
{
temp LowStatus = XMC1000 CalcTSEVAR (temp Low k);
if (temp LowStatus == 0)
{
temp Low k--;

}
SCU_ANALOG->ANATSEIL = temp LowStatus;

/* Enable service request on DTS temperature lower than expected
event*/

XMC SCU_INTERRUPT EnableEvent (XMC SCU_ INTERRUPT EVENT TSE LOW) ;

/* Convert DTS high temperature threshold value from °C to K*/
temp High k = 0 + 273;
temp HighStatus = 0;

Application Note 12 Revision 1.3
2016-02

o~ _.
How to use the on-chip temperature sensor In f| neon
XMC1000
External library functions supporting the temperature sensor

/* Convert temperature in Kelvin to threshold value and install DTS
high temperature threshold value */

while (temp HighStatus == 0)
{
temp HighStatus = XMC1000 CalcTSEVAR (temp High k);
if (temp HighStatus == 0)
{
temp High k++;

}
SCU_ANALOG->ANATSEIH = temp HighStatus;

/* Enable service request on DTS temperature higher than expected
event*/

XMC SCU INTERRUPT EnableEvent (XMC SCU INTERRUPT EVENT TSE HIGH);

while (1) ;

void SCU 1 IRQHandler (void)
{
/* Check if DTS temperature higher than expected event has occurred */
if (1==XMC SCU HighTemperature ())
{
/* Clear DTS high temperature event status */
XMC SCU INTERRUPT ClearEventStatus (XMC SCU INTERRUPT EVENT TSE HIGH) ;

/* Disable service request on DTS temperature higher than expected
event*/
XMC_SCU_INTERRUPT_D:L sableEvent (XMC_ SCU_ INTERRUPT EVENT TSE HIGH) ;

/* User code goes here .. */
XMC GPIO ToggleOutput (LEDO) ;
}

/* Check if DTS temperature lower than expected event has occurred */
if (1==XMC SCU LowTemperature())
{

Application Note 13 Revision 1.3
2016-02

'
How to use the on-chip temperature sensor In f| neon

XMC1000
External library functions supporting the temperature sensor

/* Clear DTS low temperature event status */
XMC SCU INTERRUPT ClearEventStatus (XMC SCU INTERRUPT EVENT TSE LOW) ;

/* Disable service request on DTS temperature lower than expected
event*/

XMC_SCU_INTERRUPT DisableEvent (XMC SCU INTERRUPT EVENT TSE_LOW) ;

/* User code goes here .. */

XMC GPIO ToggleOutput (LEDIL) ;
}

[1] AReference. See the XMC1000 reference manual, data sheet at http://www.infineon.com/XMC1000

Revision 1.3

Application Note 14
2016-02

http://www.infineon.com/XMC1000

XMC1000

o _.
How to use the on-chip temperature sensor ‘ In f| neon

External library functions supporting the temperature sensor

[2] AReference. See DAVE™ at http://www.infineon.com/DAVE

Revision history

Major changes since the last revision

Page or Reference

Description of change

All

Changed in Application Note template.

All Added code examples based on SCU XMC Lib functions in DAVE™ Version 4
environment.
All Adapted code examples based on DTS external library functions in DAVE™ Version 4

environment.

Application Note

15 Revision 1.3
2016-02

http://www.infineon.com/DAVE

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™,
i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,

thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-02
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
AP32323

IMPORTANT NOTICE

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 XMC™ Lib functions supporting temperature sensor
	1.1 Calculation of current chip temperature
	1.1.1 XMC_SCU_CalcTemperature

	1.2 Installation of threshold values for temperature comparison
	1.2.1 XMC_SCU_SetTempLowLimit
	1.2.2 XMC_SCU_SetTempHighLimit

	2 External library functions supporting the temperature sensor
	2.1 Calculation of the current chip temperature
	2.1.1 XMC1000_CalcTemperature

	2.2 Conversion of temperature to threshold values for temperature comparison
	2.2.1 XMC1000_CalcTSEVAR

	Revision history

